Images of SMC Research 1996

Rewriting

. Bethke, J.W. Klop

1. INTRODUCTION
Many computations can be modeled as step-by-step transformations or
rewriting of a string of symbols (words, expressions, terms), intending to
reach some final result as an answer (a normal form). Such a rewrite step,
to be perceived as an atomic computation step, consists of replacing part of
the expression by a simpler part, according to the rules of some rewriting
system. E.g., in arithmetic: (3+5)-(14+2) - 8-(1+2) — 83 — 24,
The study of rewriting systems belongs to the area of symbolic computa-
tion. T'he mailn applications of rewriting are in the fields of abstract data
types and algebraic specifications, automated theorem proving, functional
programming and logic programming. Rewriting can be studied at several
levels. In this informal survey, we aim to give an impression of several of
these levels, roughly in order of increasing complexity. In our choice of top-
ics, we have put an emphasis on subjects that CWI has contributed to during
the last decade. Especially we mention conditional rewriting, higher-order
rewriting, infinitary rewriting and term graph rewriting.

2. ABSTRACT REWRITING

The simplest level is abstract rewriting which consists essentially of the study
of one or more binary relations on some set of abstract objects. Figure 1
displays such an abstract reduction system or ARS. The arrows give the
binary rewrite relation on the tfour objects a, b, ¢, d. Thus we have successful

325

326

|. BETHKE, |.WW. Klorp

Q-+ b ¢ — (]

terminating rewritings such as & — ¢ — d, but also unsuccessful infinite
rewritings b — ¢ — b — ¢ — ---. The elements a and d, from which no
further step is possible, are called normal forms.

3. STRING REWRITING

A more concrete form of rewriting is that of string rewriting. As an example,
consider the following interesting puzzle, posed by H. Zantema (Utrecht
University): Given is the string rewrite rule

0011 — 111000.

An application of the rule consists in replacing in some 0, 1-string an occur-
rence of a substring 0011 by 111000. For example, we may rewrite

00111111 —
1110001111 —
111011100011 —
11101110111000

from where no further rewriting is possible; so the string is a normal form.
The reader may enjoy herself with discovering that any rewrite sequence us-
ing this rule must terminate eventually - that is, the rule has the termination
property. The proof is non-trivial.

4. FIRST-ORDER TERM REWRITING
The next level of rewriting, next in order of increasing complexity, is that of
first-order term rewriting. Whereas strings (or words) over some alphabet
are rather poorly structured carriers of information, first-order terms are
a very general medium for carrying information, and this notion together
with 1ts semantics as given by A. Tarski has turned out to be extremely
fruitful and permeates much of mathematical logic and computer science of
this century. We introduce the notion of a first-order rewrite system by the
example in Table 1.

T'hese four rewrite rules specify elegantly addition A and multiplication
M on natural numbers 0,5(0),S(S(0)),.... Using these rules we compute

REWRITING

r1 A(x,0) —
r2 A(x,8(y)) — S(A(x,y))
"3 M(.,lf", O) — ()
ry M(x,S(y)) — AM(x,y),x)
Table 1
2 %2
Y
2 142
S(2x 141) (2x0+2)+2
S(S(2x14+0)) S((2xO0+2)41) V S(2x0+1)+2
/ \ / ZEN
S(S(2x1)) S(S((2X0+2)4+0)) A S(S(2x0+1)+1) V S(S(2x040))+2
\ / H(((HE)H) AR\
S(S(2x0+2)) \! S(S(S(2x04+1)40)) A S(S(S(2x0+0))41) V. S(S(2X0))+2
| S((042)40)) S(S(0+1)41) S(S(040)) 42

\/ S(S(S(2x04+1))) Vv 25 (S(S(S(2x040))+0)) S(S(S(2x0))+1) v
S(S(042)) S(S(S(04+1)Y+0)) S(S(S(04+0))+1) 242
327
V/ S(S5(S(5(2x04+0)))) S(S(S(S(2x0))40 v
S(0+1))) S(S(S(S(04+0))+0)) S(2+1)

v S(S(S(S(2x0)))) v
S(S(S(S(0+0)))) S(S(240))

Figure 2.

328

| BETHKE,] WV, Klop

{

/

8
o {3
Ly

N\ S

Figure 3. Confluence and weak confluence property.

2 x 2 =4 as displayed in figure 2, where the usual infir notation for A and M
1s employed. An inspection of figure 2, containing all possible computations
or rewrlte sequences of 2 x 2 to 4, is enough to wonder why all computations
indeed yield the same final result or normal form. In other words why the
rewrite system is confluent (see figure 3). There a double-headed arrow —»
denotes a sequence of rewrite steps of arbitrary length (possibly 0). Fortu-
nately, the system for arithmetic is confluent as the rules have the technical
property of orthogonality (they are independent of each other in the sense
that applying one rule does not destroy the possible application of another
rule.).

Figure 3 displays the confluence property, also called Church-Rosser prop-
erty, which 1s next to the termination property the most fundamental prop-
erty 1n rewriting. It guarantees the uniqueness of normal forins. The weaker
property of weak confluence is useful to prove confluence, but actually not
enough: turning back to the ARS in figure 1 we see that this rewrite system
1s weakly confluent, but not confluent. Every pair of divergent single steps
can be joined again (by arbitrary long rewrite sequences), but not every
pair of divergent rewrite sequences can be made to converge again. (E.g.,
the end points of the pair b — a and b — ¢ — d cannot come together
any more.) Actually, the weak confluence property suggests that one can
obtain confluence by repeatedly tiling the plane with tiles as in the figure for
weak confluence. But this will not succeed always, as the tiling procedure
might go on indefinitely, and diverge to yield some fractal-like picture as in
figure 4.

But looking at this infinite rewrite diagram, it is easily and rightly conjec-
tured that in the presence of the termination property we will have success
with this tiling procedure.

REAVARITING

wa Y et el B

mmmmmm

Tttt i el g AR e L W P O e 10 T P bt R by 4 W e il ey ry—

5. COMBINATORY LocIC
Actually, we do not need to devise special-purpose rewrite systems such
as the one above in Table 1--there is a universal, general-purpose rewrite
system, discovered in 1924 by M. Schonfinkel, called Combinatory Logic.
Just as lambda calculus it is one of the perennial gems that mathematical 390
logic has contributed to computer science. Combinatory Logic consists of
the three rewrite rules in Table 2.
Here S, K, I are the basic constants and x, y, z are variables for terms. It
1s understood that a part of a term, built from S, X, I and matching the left-

e (((S-x)-y)-2) — ((x-2)-(y-2))
ro ((K-x)-y) —
ry (I-x) — I

Table 2.

330

| BETHKE, |.W. KlOP

hand side of one of these rules, may be replaced by the corresponding right-
hand side. The binary operator - is called application; often its notation is
suppressed. Thus we have, e.g., the two step rewrite sequence

(((SK)I)I) — ((KI)(KI)) — I

which cannot be prolonged, since the final term I is irreducible (a normal
form). Not all terms in CL can be rewritten to a normal form: for instance
((SI)I)((SI)I) cannot.

6. CONDITIONAL REWRITING
T'here are several ways to enhance, refine, or generalize first-order rewriting.
One of them is conditional rewriting, an example of which is given in Table 3.

T'his system computes the greatest common divisor of natural numbers
(generated by 0 and successor S) using the two conditional rewrite rules rg
and rg. The intended meaning of such conditional rewrite rules is that their
application is only allowed if the condition to the right of <= is fulfilled.
Here a circularity is apparent: the conditions are stated themselves in terms
of the rewrite relation — that they help to define. But a little bit of theory
shows that this circularity is not harmful at all but quite innocent. Theory
also has established (in an observation of J.A. Bergstra) that the conditional
format is indeed strictly more powerful than the unconditional first-order
scheme: some natural data types can be specified with a conditional rewrite
system, but cannot without.

A different enhancement of first-order rewriting is to impose a certain
order on the rewrite rules, with the intention that a rule which is higher in
the order will be the preferred one to apply in case of choice. Such systems
are called priority rewrite systems; their actual definition and semantics is

T 0<0 — false

ro 0 < S(x) — true

r3 S(z) <0 — false

e S(@)<S(y) — z<y

rs S(z)—8(y) — x-—y

T6 0—2x — 0

T~ r — 0 — X

rs gecd(x,y) — ged(xr —y,y) <= y <z — true
r9 gecd(zx,y) — gcd(x,y —x) <= x <y — false
r10 gcd(x,x) —

REVWRITING

Figure 5.

technically difficult. An interesting and wide open area of investigation is
given by the combination of the two last features, priorities and conditions.

7. HIGHER-ORDER REWRITING

A vast generalization is obtained when we go to higher-order rewriting.
Here an essentially new feature is encountered (as compared to first-order
rewriting): that of the bound variable, already well known in first-order
predicate logic in quantified assertions as Vx ¢(x) (all x have property ¢)
and dx ¢(x) (there exists an = with property ¢).

The paradigm rewrite system of higher-order rewriting is another classical
gem: lambda calculus. But higher-order rewriting has a wider scope and
also includes rewrite systems appearing in Proof Theory such as the one
in figure 5. These rewrite rules ‘normalize’ proofs in Natural Deduction by
cutting away superfluous detours. The rules take in linear notation written
in the formalism of Combinatory Reduction Systems (which constitutes one
specific format for higher-order rewriting) the form displayed in Table 4.
Here the alphabet of the Combinatory Reduction System consists of two
unary function symbols inl and inr (for introduction of disjunction) and
a ternary function symbol el (for elimination of disjunction).

K. INFINITARY REWRITING

For practical purposes one is often more interested in infinite objects than
finite terms and their normal form. Such infinite objects can be given by a
recursive (‘circular’) definition such as

el(inl(Z2), .IZ()(.I’), ylZ1(y)) — Zg(2)

331

332

| BETHike, | W, KLOP

H#letrecones = 1 :: ones::

which denotes the infinite sequence of ones, 111---, written in CAML. a
modern functional programming language. (A note on syntax: # and ::
denote the CAML prompt and list constructor, respectively, ;7 represents
the end of a sentence.)

The crucial manoeuvre to get infinite rewriting off the ground, is the
formulation of the right notion of converging rewrite sequences. Namely,
we have rewrite sequences which may take more than w steps, where w is
the ordinal just after the natural numbers. So we need to know what is the
litmat of a rewrite sequence at limit ordinals A. It turns out that the right
notion of convergence towards a limit term is the one where not only an
increasing part of the term is ‘crystallized out’, but also in this process the
depth of the rewrite activity tends to infinity at every limit ordinal, w, w.2,
w.3, « -+, w?,--. Figure 6 pictures this situation.

Infinitary rewriting is a point of view that can be applied to first-order
rewriting, but also to the higher-order rewrite system of lambda calculus.
Figure 7 displays a rewrite sequence of length w+w involving infinite laiambda
terms. Infinitary lambda calculus has an important theoretical application:
namely that of providing a semantics for cyclic lainbda graph rewriting,
discussed below.

9. TERM GRAPH REWRITING

In recent years attention has been given to a generalization of term rewriting
called graph rewriting. The main idea, arising from the need for efficient im-
plementation of term rewriting, is not to duplicate subterms when rewriting,
but to share subterims by using pointers to just one copy. Also cyclic graphs
are allowed. Thus the fized point combinator Y, embodying the possibility

0 W .2 .3 (,02
A T e T o O I O T e e O R R 1 e O I AN R R AL

\ | :
B [

depth of contracted redex tends to infinity
at each limit ordinal

Figure 6.

| (! ¥ 3 0
(X A X -—-—-——-b AX —-—-——-—-—» AX
I (1) I (1) I
F g ;
7/ \, 7/ \. AN
(@ Sx (@ S X X
A 3
i‘s.y/ \Sx)Tv/ \Sx
G X
@/C\Sy \Sy Q\SSX
X
)\.X/ \S},
|
K F l
AN
@/ \Sx @/ \SSy SSSx
3 \ p AN
| A.Iy/ Sx A_y/ 5SSy
|
(Q
@/ \Sy C\Sy J\SSSSJ{
7\
-
F F
/ '\ Necc
@ SSy SSSSSx
p N\
7iy/ S5y
G
I /G\Sy SSSSSSx
Figure 7.

hhhhhh v — oy k. - - - ———

Q)

Q Q
/ \ o /
Y X €T

e - . ” " e Arirn e, it il A

Figure 8.

R EAARITING

334

| BETHKE, |.WV. KLOP

of recursive definitions by means of its typical rewrite rule Y- & — x - (Y -r),
can be implemented in an elegant way as in figure 8. (Note that repeated
application of the rewrite rule Y- x — & - (Y -) leads to the infinite term
z-(x-(x-(x-..., which is finitely presented by the right-hand side ot the
eraph rewrite rule in the figure, where @ stands for -.)

10. CyYCLIC LAMBDA GRAPHS

Not only in the realm of first-order terms cycles are important, also for
lambda calculus they constitute a useful new level of rewriting. While al-
ready occurring in the practice of functional programming, the theory ot
cyclic lambda calculus or as we prefer to say, lambda calculus with explicit
recursion, is only in development since very recent years. As an exam-
ple, consider the CAML specification of the sequence of Fibonacci numbers
1,1,2,3,5,8,--.

tl (y)

Cvclic lambda graph for computing the sequence of Fibonacct
numbers

Figure 9.

REVVRITING

let rec fibs = 1 :: sum fibs (0::fibs);;
let rec sum = funxy — (hd x + hd y) :: sum (t1 x) (t1ly) :;

Graphically, this is a cyclic lambda graph as in figure 9. (The heavy
arrows point to the roots of the two ‘redexes’ that are present in this graph
(‘redex = reducible expression’). An understanding of explicit recursion in
lambda calculus serves to clarify the important programming concepts of
‘let” and ‘letrec’.

ACKNOWLEDGEMENTS

Many thanks to Z.M. Ariola, F. van Raamsdonk for helping out with the
production of this paper in various ways, and to A. Middeldorp for kindly
making figure 2 (from his Ph.D. thesis) available to us.

REFERENCES

1. Z.M. AriorLa, J.W. Kropr (1994). Cyclic lambda graph rewriting.
Proc. Ninth Symposium on Logic in Computer Science (LICS’94), Paris,
France, 416-425.

J.A. BERGSTRA, J.W. KLOP (1986). Conditional rewrite rules: con-
fluence and termination. J. Comput. System Sci. 32(8), 323-362.

3. J.R. KENNAwAY, J. W. Kropr, M.R. SLEEP, F.J. DE VRIES (1995).
Transfinite reductions in orthogonal term rewriting systems. Informa-
tzon and Computation 119(1), 18-38.

4. J.W. KrLoP (1992). Term rewriting systems. S. ABRAMSKY, D. GAB-
BAY, T. MAIBAUM (eds.). Handbook of Logic in Computer Science,
volume II, Oxford University Press, 1-116.

DO

5. J.W. KLoP, V.VAN O0OSTROM, F.VAN RAAMSDONK (1993). Combina-
tory reduction systems: Introduction and survey. Theoretical Computer
Science 121(1-2), 279-308. A Collection of Contributions in Honour of -
Corrado Bohm on the Occasion of his 70th Birthday, guest eds. M. 335
Dezani-Ciancaglini, S. Ronchi Della Rocca and M. Venturini-Zilli. '

